Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 2.875
1.
Mol Med ; 30(1): 52, 2024 Apr 19.
Article En | MEDLINE | ID: mdl-38641575

BACKGROUND: Skin fibrosis affects the normal function of the skin. TGF-ß1 is a key cytokine that affects organ fibrosis. The latency-associated peptide (LAP) is essential for TGF-ß1 activation. We previously constructed and prepared truncated LAP (tLAP), and confirmed that tLAP inhibited liver fibrosis by affecting TGF-ß1. SPACE peptide has both transdermal and transmembrane functions. SPACE promotes the delivery of macromolecules through the stratum corneum into the dermis. This study aimed to alleviate skin fibrosis through the delivery of tLAP by SPACE. METHODS: The SPACE-tLAP (SE-tLAP) recombinant plasmid was constructed. SE-tLAP was purified by nickel affinity chromatography. The effects of SE-tLAP on the proliferation, migration, and expression of fibrosis-related and inflammatory factors were evaluated in TGF-ß1-induced NIH-3T3 cells. F127-SE-tLAP hydrogel was constructed by using F127 as a carrier to load SE-tLAP polypeptide. The degradation, drug release, and biocompatibility of F127-SE-tLAP were evaluated. Bleomycin was used to induce skin fibrosis in mice. HE, Masson, and immunohistochemistry were used to observe the skin histological characteristics. RESULTS: SE-tLAP inhibited the proliferation, migration, and expression of fibrosis-related and inflammatory factors in NIH-3T3 cells. F127-SE-tLAP significantly reduced ECM production, collagen deposition, and fibrotic pathological changes, thereby alleviating skin fibrosis. CONCLUSION: F127-SE-tLAP could increase the transdermal delivery of LAP, reduce the production and deposition of ECM, inhibit the formation of dermal collagen fibers, and alleviate the progression of skin fibrosis. It may provide a new idea for the therapy of skin fibrosis.


Polyethylenes , Polypropylenes , Skin Diseases , Transforming Growth Factor beta , Animals , Mice , Bleomycin/adverse effects , Collagen/metabolism , Fibrosis/drug therapy , Hydrogels/chemistry , Hydrogels/pharmacology , Polyethylenes/pharmacology , Polypropylenes/pharmacology , Signal Transduction , Transforming Growth Factor beta/metabolism , Transforming Growth Factor beta1/metabolism , Skin Diseases/chemically induced , Skin Diseases/drug therapy , Skin Diseases/metabolism , Smad Proteins/drug effects , Smad Proteins/metabolism , Skin/drug effects , Skin/metabolism , Skin/pathology
2.
Respir Res ; 25(1): 154, 2024 Apr 02.
Article En | MEDLINE | ID: mdl-38566093

Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive, fatal, and aging-associated interstitial lung disease with a poor prognosis and limited treatment options, while the pathogenesis remains elusive. In this study, we found that the expression of nuclear receptor subfamily 2 group F member 2 (NR2F2), a member of the steroid thyroid hormone superfamily of nuclear receptors, was reduced in both IPF and bleomycin-induced fibrotic lungs, markedly in bleomycin-induced senescent epithelial cells. Inhibition of NR2F2 expression increased the expression of senescence markers such as p21 and p16 in lung epithelial cells, and activated fibroblasts through epithelial-mesenchymal crosstalk, inversely overexpression of NR2F2 alleviated bleomycin-induced epithelial cell senescence and inhibited fibroblast activation. Subsequent mechanistic studies revealed that overexpression of NR2F2 alleviated DNA damage in lung epithelial cells and inhibited cell senescence. Adenovirus-mediated Nr2f2 overexpression attenuated bleomycin-induced lung fibrosis and cell senescence in mice. In summary, these data demonstrate that NR2F2 is involved in lung epithelial cell senescence, and targeting NR2F2 may be a promising therapeutic approach against lung cell senescence and fibrosis.


Cellular Senescence , Idiopathic Pulmonary Fibrosis , Animals , Mice , Bleomycin/adverse effects , Epithelial Cells/metabolism , Idiopathic Pulmonary Fibrosis/drug therapy , Lung/metabolism
3.
Int J Mol Sci ; 25(8)2024 Apr 10.
Article En | MEDLINE | ID: mdl-38673771

Using a lipopolysaccharide model of acute lung injury, we previously showed that endothelin-1 (ET-1), a potent mediator of vasoconstriction, may act as a "gatekeeper" for the influx of inflammatory cells into the lung. These studies provided a rationale for testing the effect of HJP272, an endothelin receptor antagonist (ERA), in hamster models of pulmonary fibrosis induced by intratracheal instillation of either bleomycin (BLM) or amiodarone (AM). To determine the temporal effects of blocking ET-1 activity, animals were given HJP272 either 1 h before initiation of lung injury or 24 h afterward. The results indicated that pretreatment with this agent caused significant reductions in various inflammatory parameters, whereas post-treatment was ineffective. This finding suggests that ERAs are only effective at a very early stage of pulmonary fibrosis and explains their lack of success in clinical trials involving patients with this disease. Nevertheless, ERAs could serve as prophylactic agents when combined with drugs that may induce pulmonary fibrosis. Furthermore, developing a biomarker for the initial changes in the lung extracellular matrix could increase the efficacy of ERAs and other therapeutic agents in preventing the progression of the disease. While no such biomarker currently exists, we propose the ratio of free to peptide-bound desmosine, a unique crosslink of elastin, as a potential candidate for detecting the earliest modifications in lung microarchitecture associated with pulmonary fibrosis.


Endothelin Receptor Antagonists , Pulmonary Fibrosis , Animals , Pulmonary Fibrosis/drug therapy , Pulmonary Fibrosis/metabolism , Pulmonary Fibrosis/pathology , Endothelin Receptor Antagonists/pharmacology , Endothelin Receptor Antagonists/therapeutic use , Bleomycin/adverse effects , Cricetinae , Disease Models, Animal , Male , Lung/pathology , Lung/drug effects , Lung/metabolism , Humans , Endothelin-1/metabolism
4.
Mol Med ; 30(1): 54, 2024 Apr 22.
Article En | MEDLINE | ID: mdl-38649802

BACKGROUND: Bleomycin, a potent antitumor agent, is limited in clinical use due to the potential for fatal pulmonary toxicity. The accelerated DNA damage and senescence in alveolar epithelial cells (AECs) is considered a key factor in the development of lung pathology. Understanding the mechanisms for bleomycin-induced lung injury is crucial for mitigating its adverse effects. METHODS: Human lung epithelial (A549) cells were exposed to bleomycin and subsequently assessed for cellular senescence, DNA damage, and double-strand break (DSB) repair. The impact of Rad51 overexpression on DSB repair and senescence in AECs was evaluated in vitro. Additionally, bleomycin was intratracheally administered in C57BL/6 mice to establish a pulmonary fibrosis model. RESULTS: Bleomycin exposure induced dose- and time-dependent accumulation of senescence hallmarks and DNA lesions in AECs. These effects are probably due to the inhibition of Rad51 expression, consequently suppressing homologous recombination (HR) repair. Mechanistic studies revealed that bleomycin-mediated transcriptional inhibition of Rad51 might primarily result from E2F1 depletion. Furthermore, the genetic supplement of Rad51 substantially mitigated bleomycin-mediated effects on DSB repair and senescence in AECs. Notably, decreased Rad51 expression was also observed in the bleomycin-induced mouse pulmonary fibrosis model. CONCLUSIONS: Our works suggest that the inhibition of Rad51 plays a pivotal role in bleomycin-induced AECs senescence and lung injury, offering potential strategies to alleviate the pulmonary toxicity of bleomycin.


Bleomycin , Cellular Senescence , DNA Repair , Rad51 Recombinase , Bleomycin/adverse effects , Rad51 Recombinase/metabolism , Rad51 Recombinase/genetics , Animals , Cellular Senescence/drug effects , Cellular Senescence/genetics , Humans , Mice , DNA Repair/drug effects , Mice, Inbred C57BL , Pulmonary Fibrosis/chemically induced , Pulmonary Fibrosis/genetics , Pulmonary Fibrosis/metabolism , Pulmonary Fibrosis/pathology , Disease Models, Animal , Down-Regulation/drug effects , A549 Cells , DNA Damage/drug effects , DNA Breaks, Double-Stranded/drug effects , E2F1 Transcription Factor/metabolism , E2F1 Transcription Factor/genetics , Alveolar Epithelial Cells/metabolism , Alveolar Epithelial Cells/drug effects
5.
Redox Biol ; 72: 103148, 2024 Jun.
Article En | MEDLINE | ID: mdl-38603946

BACKGROUND: Interstitial lung disease (ILD) treatment is a critical unmet need. Selenium is an essential trace element for human life and an antioxidant that activates glutathione, but the gap between its necessity and its toxicity is small and requires special attention. Whether selenium can be used in the treatment of ILD remains unclear. METHODS: We investigated the prophylactic and therapeutic effects of selenite, a selenium derivative, in ILD using a murine model of bleomycin-induced idiopathic pulmonary fibrosis (IPF). We further elucidated the underlying mechanism using in vitro cell models and examined their relevance in human tissue specimens. The therapeutic effect of selenite in bleomycin-administered mice was assessed by respiratory function and histochemical changes. Selenite-induced apoptosis and reactive oxygen species (ROS) production in murine lung fibroblasts were measured. RESULTS: Selenite, administered 1 day (inflammation phase) or 8 days (fibrotic phase) after bleomycin, prevented and treated deterioration of lung function and pulmonary fibrosis in mice. Mechanistically, selenite inhibited the proliferation and induced apoptosis of murine lung fibroblasts after bleomycin treatment both in vitro and in vivo. In addition, selenite upregulated glutathione reductase (GR) and thioredoxin reductase (TrxR) in murine lung fibroblasts, but not in lung epithelial cells, upon bleomycin treatment. GR and TrxR inhibition eliminates the therapeutic effects of selenite. Furthermore, we found that GR and TrxR were upregulated in the human lung fibroblasts of IPF patient samples. CONCLUSIONS: Selenite induces ROS production and apoptosis in murine lung fibroblasts through GR and TrxR upregulation, thereby providing a therapeutic effect in bleomycin-induced IPF.


Apoptosis , Bleomycin , Fibroblasts , Reactive Oxygen Species , Selenious Acid , Bleomycin/adverse effects , Animals , Mice , Fibroblasts/drug effects , Fibroblasts/metabolism , Humans , Reactive Oxygen Species/metabolism , Apoptosis/drug effects , Selenious Acid/pharmacology , Lung/drug effects , Lung/pathology , Lung/metabolism , Disease Models, Animal , Pulmonary Fibrosis/chemically induced , Pulmonary Fibrosis/drug therapy , Pulmonary Fibrosis/metabolism , Pulmonary Fibrosis/pathology , Idiopathic Pulmonary Fibrosis/drug therapy , Idiopathic Pulmonary Fibrosis/chemically induced , Idiopathic Pulmonary Fibrosis/metabolism , Idiopathic Pulmonary Fibrosis/pathology , Male , Cell Proliferation/drug effects
6.
Medicina (Kaunas) ; 60(3)2024 Mar 02.
Article En | MEDLINE | ID: mdl-38541156

Background and Objectives: eBEACOPP is the most effective chemotherapy regimen for younger patients with early unfavorable (EU) and advanced-stage (AS) Hodgkin lymphoma (HL), albeit with significant toxicities. The 14-day/cycle prednisone course contributes to side effects, including osteoarticular events like avascular bone necrosis (AVN). Our center has been using eBEACOPP since 2009 for AS and 2014 for EU patients. In 2016, we reduced prednisone treatment to 7-10 days to lessen AVN risk. We analyzed the effects of this approach. Materials and Methods: We retrospectively collected data on patients who received at least two cycles of eBEACOPP for first-line HL treatment. Results: A total of 162 patients (33 EU, 129 AS) were included. Their median age was 31 (range 19-59 years), and 88 were males. A total of 94 patients received full corticosteroid courses, and 68 received reduced corticosteroid courses. The overall response rate (ORR) was 98%. Different corticosteroid dosings had no significant effect on ORR, febrile neutropenia episodes, or hospital admissions. After a median follow-up (mFU) of 58 months, the 5yPFS for the entire cohort was 98% vs. 95% for the standard course vs. the short corticosteroids course, respectively (p = 0.37), while the 5yOS was 98% vs. 99% for the standard course vs. short corticosteroids course, respectively (p = 0.87). In AS patients intended to be treated with six eBEACOPP cycles, 5yPFS and 5yOS were 100% vs. 97% and 100% vs. 99% for standard vs. short corticosteroid courses, respectively (p = 0.56 and p = 0.17). In EU patients, 5yPFS was 97% (standard) vs. 95% (short) (p = 0.98) and 5yOS 100% vs. 93.3% (p = 0.87). Osteoarticular events were numerically lower in patients receiving the shorter prednisone course, both in the whole cohort and in the subgroup of patients treated with six cycles of eBEACOPP, but this difference failed to reach statistical significance. Conclusions: eBEACOPP provides excellent and durable first-line disease control. Shortening the corticosteroid course does not compromise efficacy, potentially reducing toxicity. However, longer follow-ups and larger studies are needed for confirmation.


Hodgkin Disease , Male , Humans , Young Adult , Adult , Middle Aged , Female , Hodgkin Disease/drug therapy , Prednisone/adverse effects , Retrospective Studies , Cyclophosphamide/adverse effects , Vincristine/adverse effects , Bleomycin/adverse effects , Doxorubicin/adverse effects , Adrenal Cortex Hormones/adverse effects , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Treatment Outcome
7.
Artif Cells Nanomed Biotechnol ; 52(1): 201-217, 2024 Dec.
Article En | MEDLINE | ID: mdl-38488151

The main purpose of this study was to explore the changes of biomarkers in different developmental stages of bleomycin-induced pulmonary fibrosis (PF) in rats via comprehensive pathophysiology, UPLC-QTOF/MS metabonomic technology, and 16S rRNA gene sequencing of intestinal microbiota. The rats were randomly divided into normal control and 1-, 2- and 4-week model group. The rat model of PF was established by one-time intratracheal instillation of bleomycin. The levels of inflammatory and fibrosis-related factors such as hydroxyproline (HYP), type III procollagen (COL-III), type IV collagen (COL-IV), hyaluronidase (HA), laminin (LN), interleukin (IL)-1ß, IL-6, malondialdehyde (MDA) increased and superoxide dismutase (SOD) decreased as the PF cycle progressed. In the 1-, 2- and 4-week model group, 2, 19 and 18 potential metabolic biomarkers and 3, 16 and 12 potential microbial biomarkers were detected, respectively, which were significantly correlated. Glycerophospholipid metabolism pathway was observed to be an important pathway affecting PF at 1, 2 and 4 weeks; arginine and proline metabolism pathways significantly affected PF at 2 weeks. Linoleic acid metabolism pathway exhibited clear metabolic abnormalities at 2 and 4 weeks of PF, and alpha-linolenic acid metabolism pathway significantly affected PF at 4 weeks.


In this study, metabolomics technology and intestinal microbiota 16S rRNA gene sequencing were used to search for biomarkers with significant differences in each stage of pulmonary fibrosis. Finally, the variation characteristics of each stage of the disease were discussed. The hope is to provide new insights into the development of diagnostic biomarkers and potential therapeutic targets at all stages.


Gastrointestinal Microbiome , Pulmonary Fibrosis , Rats , Animals , Pulmonary Fibrosis/chemically induced , RNA, Ribosomal, 16S , Bleomycin/adverse effects , Biomarkers
8.
Bioorg Chem ; 146: 107286, 2024 May.
Article En | MEDLINE | ID: mdl-38537336

Pulmonary fibrosis (PF) poses a significant challenge with limited treatment options and a high mortality rate of approximately 45 %. Qingkailing Granule (QKL), derived from the Angong Niuhuang Pill, shows promise in addressing pulmonary conditions. Using a comprehensive approach, combining network pharmacology analysis with experimental validation, this study explores the therapeutic effects and mechanisms of QKL against PF for the first time. In vivo, QKL reduced collagen deposition and suppressed proinflammatory cytokines in a bleomycin-induced PF mouse model. In vitro studies demonstrated QKL's efficacy in protecting cells from bleomycin-induced injury and reducing collagen accumulation and cell migration in TGF-ß1-induced pulmonary fibrosis cell models. Network pharmacology analysis revealed potential mechanisms, confirmed by western blotting, involving the modulation of PI3K/AKT and SRC/STAT3 signaling pathways. Molecular docking simulations highlighted interactions between QKL's active compounds and key proteins, showing inhibitory effects on epithelial damage and fibrosis. Collectively, these findings underscore the therapeutic potential of QKL in alleviating pulmonary inflammation and fibrosis through the downregulation of PI3K/AKT and SRC/STAT3 signaling pathways, with a pivotal role attributed to its active compounds.


Drugs, Chinese Herbal , Pulmonary Fibrosis , Mice , Animals , Pulmonary Fibrosis/chemically induced , Pulmonary Fibrosis/drug therapy , Pulmonary Fibrosis/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Molecular Docking Simulation , Signal Transduction , Collagen/metabolism , Collagen/pharmacology , Collagen/therapeutic use , Fibrosis , Bleomycin/adverse effects
9.
Int Immunopharmacol ; 131: 111774, 2024 Apr 20.
Article En | MEDLINE | ID: mdl-38489971

Corona Virus Disease 2019 (COVID-19) is an infectious disease that seriously endangers human life and health. The pathological anatomy results of patients who died of the COVID-19 showed that there was an excessive inflammatory response in the lungs. It is also known that most of the COVID-19 infected patients will cause different degrees of lung damage after infection, and may have pulmonary fibrosis remaining after cure. Macrophages are a type of immune cell population with pluripotency and plasticity. In the early and late stages of infection, the dynamic changes of the balance and function of M1/M2 alveolar macrophages have a significant impact on the inflammatory response of the lungs. In the early stage of pulmonary fibrosis inflammation, the increase in the proportion of M1 type is beneficial to clear pathogenic microorganisms and promote the progress of inflammation; in the later stage of fibrosis, the increase in the number of M2 type macrophages can inhibit the inflammatory response and promote the degradation of fibrosis. As a potential treatment drug for new coronavirus pneumonia, favipiravir is in the process of continuously carried out relevant clinical trials. This study aims to discuss whether the antiviral drug favipiravir can suppress inflammation and immune response by regulating the M1/M2 type of macrophages, thereby alleviating fibrosis. We established a bleomycin-induced pulmonary fibrosis model, using IL-4/13 and LPS/IFN-γ cell stimulating factor to induce macrophage M1 and M2 polarization models, respectively. Our study shows that favipiravir exerts anti-fibrotic effects mainly by reprogramming M1/M2 macrophages polarization, that is, enhancing the expression of anti-fibrotic M1 type, reducing the expression of M2 type pro-fibrotic factors and reprogramming it to anti-fibrotic phenotype. Aspects of pharmacological mechanisms, favipiravir inhibits the activation of JAK2-STAT6 and JAK2-PI3K-AKT signaling by targeting JAK2 protein, thereby inhibiting pro-fibrotic M2 macrophages polarization and M2-induced myofibroblast activation. In summary, favipiravir can reduce the progression of pulmonary fibrosis, we hope to provide a certain reference for the treatment of pulmonary fibrosis.


Amides , COVID-19 , Pneumonia , Pulmonary Fibrosis , Pyrazines , Humans , Pulmonary Fibrosis/chemically induced , Pulmonary Fibrosis/drug therapy , Pulmonary Fibrosis/metabolism , Bleomycin/adverse effects , Phosphatidylinositol 3-Kinases/metabolism , Macrophages , Inflammation/metabolism , Fibrosis , Pneumonia/metabolism , COVID-19/metabolism
10.
Int Immunopharmacol ; 131: 111834, 2024 Apr 20.
Article En | MEDLINE | ID: mdl-38493696

Pulmonary fibrosis is a chronic and progressively deteriorating lung condition that can be replicated in laboratory animals by administering bleomycin, a chemotherapeutic antibiotic known for its lung fibrosis-inducing side effects. L-arginine, a semi-essential amino acid, is recognized for its diverse biological functions, including its potential to counteract fibrosis. This study aimed to evaluate the antifibrotic properties of L-arginine on bleomycin-induced pulmonary fibrosis in rats. The administration of a single intratracheal dose of bleomycin resulted in visible and microscopic damage to lung tissues, an uptick in oxidative stress markers, and an elevation in inflammatory, apoptotic, and fibrotic indicators. A seven-day treatment with L-arginine post-bleomycin exposure markedly improved the gross and histological architecture of the lungs, prevented the rise of malondialdehyde and carbonyl content, and enhanced total antioxidant capacity alongside the activities of antioxidant enzymes. Also, L-arginine attenuated the expression of the pro-fibrotic factors, transforming growth factor-ß and lactate dehydrogenase in bronchoalveolar lavage fluid. In the lung tissue, L-arginine reduced collagen deposition, hydroxyproline concentration, and mucus production, along with decreasing expression of α-smooth muscle actin, tumor necrosis factor-α, caspase-3, matrix metalloproteinase-9, and ß-catenin. Moreover, it boosted levels of nitric oxide and upregulated the expression of peroxisome proliferator-activated receptor-γ (PPAR-γ), heme oxygenase-1 (HO-1), and E-cadherin and downregulating the expression of ß-catenin. These findings suggest that L-arginine has preventive activities against bleomycin-induced pulmonary fibrosis. This effect can be attributed to the increased production of nitric oxide, which modulates the HO-1/PPAR-γ/ß-catenin axis.


Pulmonary Fibrosis , Rats , Animals , Pulmonary Fibrosis/chemically induced , Pulmonary Fibrosis/drug therapy , Pulmonary Fibrosis/metabolism , Bleomycin/adverse effects , Heme Oxygenase-1/metabolism , Antioxidants/pharmacology , beta Catenin/metabolism , PPAR gamma/metabolism , Nitric Oxide/metabolism , Lung/pathology , Fibrosis , Arginine/therapeutic use
11.
Int Immunopharmacol ; 130: 111741, 2024 Mar 30.
Article En | MEDLINE | ID: mdl-38394887

BACKGROUND: Acute lung injury (ALI) is an inflammatory condition characterized by acute damage to lung tissue. SPAUTIN-1, recognized as a small molecule drug targeting autophagy and USP10/13, has been reported for its potential to inhibit oxidative stress damage in various tissue injuries. However, the role and mechanism of SPAUTIN-1 in ALI remain unclear. This study aims to elucidate the protective effects of SPAUTIN-1 on ALI, with a particular focus on its role and mechanism in pulmonary inflammatory responses. METHODS: Lipopolysaccharides (LPS) were employed to induce inflammation-mediated ALI. Bleomycin was used to induce non-inflammation-mediated ALI. The mechanism of SPAUTIN-1 action was identified through RNA-Sequencing and subsequently validated in mouse primary cells. Tert-butyl hydroperoxide (TBHP) was utilized to create an in vitro model of lung epithelial cell oxidative stress with MLE-12 cells. RESULTS: SPAUTIN-1 significantly mitigated LPS-induced lung injury and inflammatory responses, attenuated necroptosis and apoptosis in lung epithelial cells, and inhibited autophagy in leukocytes and epithelial cells. However, SPAUTIN-1 exhibited no significant effect on bleomycin-induced lung injury. RNA-sequencing results demonstrated that SPAUTIN-1 significantly inhibited the NF-κB signaling pathway in leukocytes, a finding consistently confirmed by mouse primary cell assays. In vitro experiments further revealed that SPAUTIN-1 effectively mitigated oxidative stress injury in MLE-12 cells induced by TBHP. CONCLUSION: SPAUTIN-1 alleviated LPS-induced inflammatory injury by inhibiting the NF-κB pathway in leukocytes and protected epithelial cells from oxidative damage, positioning it as a potential therapeutic candidate for ALI.


Acute Lung Injury , Benzylamines , NF-kappa B , Quinazolines , Mice , Animals , NF-kappa B/metabolism , Lipopolysaccharides/pharmacology , Neutrophils/metabolism , Acute Lung Injury/chemically induced , Acute Lung Injury/drug therapy , Acute Lung Injury/metabolism , Lung , Inflammation/metabolism , Bleomycin/adverse effects , RNA/metabolism
12.
Int Immunopharmacol ; 130: 111734, 2024 Mar 30.
Article En | MEDLINE | ID: mdl-38422768

Pulmonary fibrosis is an irreversible and progressive lung disease with limited treatments available. Selinexor (Sel), an orally available, small-molecule, selective inhibitor of XPO1, exhibits notable antitumor, anti-inflammatory and antiviral activities. However, its potential role in treating pulmonary fibrosis is unknown. C57BL/6J mice were used to establish a pulmonary fibrosis model by intratracheal administration of bleomycin (BLM). Subsequently, Sel was administered intraperitoneally. Our data demonstrated that Sel administration ameliorated BLM-induced pulmonary fibrosis by increasing mouse body weights; reducing H&E staining, Masson staining scores, and shadows in mouse lung computed tomography (CT) images, decreasing the total cell and neutrophil counts in the lung and bronchoalveolar lavage fluid (BALF); and decreasing the levels of TGF-ß1. We next confirmed that Sel reduced the deposition of extracellular matrix (ECM) components in the lungs of BLM-induced pulmonary fibrosis mice. We showed that collagen I, alpha-smooth muscle actin (α-SMA), and hydroxyproline levels and the mRNA levels of Col1a1, Eln, Fn1, Ctgf, and Fgf2 were reduced. Mechanistically, tandem mass tags (TMT)- based quantitative proteomics analysis revealed a significant increase in GBP5 in the lungs of BLM mice but a decrease in that of BLM + Sel mice; this phenomenon was confirmed by western blotting and RT-qPCR. NLRP3 inflammasome signaling was significantly enriched in both the BLM group and BLM + Sel group based on GO and KEGG analyses of differentially expressed proteins between the groups. Furthermore, Sel reduced the expression of NLRP3, cleaved caspase 1, and ASC in vivo and in vitro, and decreased the levels of IL-1ß, IL-18, and IFN-r in lung tissue and BALF. SiRNA-GBP5 inhibited NLRP3 signaling in vitro, and overexpression of GBP5 inhibited the protective effect of Sel against BLM-induced cellular injury. Taken together, our findings indicate that Sel ameliorates BLM-induced pulmonary fibrosis by targeting GBP5 via NLRP3 inflammasome signaling. Thus, the XPO1 inhibitor - Sel might be a potential therapeutic agent for pulmonary fibrosis.


Hydrazines , Pulmonary Fibrosis , Triazoles , Mice , Animals , Pulmonary Fibrosis/chemically induced , Pulmonary Fibrosis/drug therapy , Pulmonary Fibrosis/metabolism , Inflammasomes/metabolism , Bleomycin/adverse effects , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Mice, Inbred C57BL , Lung/pathology
13.
J Immunol ; 212(7): 1221-1231, 2024 Apr 01.
Article En | MEDLINE | ID: mdl-38334455

Pulmonary fibrosis is a fatal condition characterized by fibroblast and myofibroblast proliferation and collagen deposition. TGF-ß plays a pivotal role in the development of pulmonary fibrosis. Therefore, modulation of TGF-ß signaling is a promising therapeutic strategy for treating pulmonary fibrosis. To date, however, interventions targeting TGF-ß have not shown consistent efficacy. CD109 is a GPI-anchored glycoprotein that binds to TGF-ß receptor I and negatively regulates TGF-ß signaling. However, no studies have examined the role and therapeutic potential of CD109 in pulmonary fibrosis. The purpose of this study was to determine the role and therapeutic value of CD109 in bleomycin-induced pulmonary fibrosis. CD109-transgenic mice overexpressing CD109 exhibited significantly attenuated pulmonary fibrosis, preserved lung function, and reduced lung fibroblasts and myofibroblasts compared with wild-type (WT) mice. CD109-/- mice exhibited pulmonary fibrosis comparable to WT mice. CD109 expression was induced in variety types of cells, including lung fibroblasts and macrophages, upon bleomycin exposure. Recombinant CD109 protein inhibited TGF-ß signaling and significantly decreased ACTA2 expression in human fetal lung fibroblast cells in vitro. Administration of recombinant CD109 protein markedly reduced pulmonary fibrosis in bleomycin-treated WT mice in vivo. Our results suggest that CD109 is not essential for the development of pulmonary fibrosis, but excess CD109 protein can inhibit pulmonary fibrosis development, possibly through suppression of TGF-ß signaling. CD109 is a novel therapeutic candidate for treating pulmonary fibrosis.


Pulmonary Fibrosis , Humans , Mice , Animals , Pulmonary Fibrosis/metabolism , Bleomycin/adverse effects , Transforming Growth Factor beta/metabolism , Lung/pathology , Fibroblasts/metabolism , Mice, Transgenic , Transcription Factors/metabolism , Mice, Inbred C57BL , Neoplasm Proteins/metabolism , Antigens, CD/metabolism , GPI-Linked Proteins/metabolism
14.
BMJ Open Respir Res ; 11(1)2024 02 20.
Article En | MEDLINE | ID: mdl-38378778

BACKGROUND: S100A9 is a damage-associated molecular pattern protein that may play an important role in the inflammatory response and fibrotic processes. Paquinimod is an immunomodulatory compound that prevents S100A9 activity. Its safety and pharmacokinetics have been confirmed in human clinical trials. In this study, we investigated the effects of paquinimod in preventing the development of lung fibrosis in vivo and examined the prognostic values of circulatory and lung S100A9 levels in patients with idiopathic pulmonary fibrosis (IPF). METHODS: The expression and localisation of S100A9 and the preventive effect of S100A9 inhibition on fibrosis development were investigated in a mouse model of bleomycin-induced pulmonary fibrosis. In this retrospective cohort study, the S100A9 levels in the serum and bronchoalveolar lavage fluid (BALF) samples from 76 and 55 patients with IPF, respectively, were examined for associations with patient survival. RESULTS: S100A9 expression was increased in the mouse lungs, especially in the inflammatory cells and fibrotic interstitium, after bleomycin administration. Treatment with paquinimod ameliorated fibrotic pathological changes and significantly reduced hydroxyproline content in the lung tissues of mice with bleomycin-induced pulmonary fibrosis. Additionally, we found that paquinimod reduced the number of lymphocytes and neutrophils in BALF and suppressed endothelial-mesenchymal transition in vivo. Kaplan-Meier curve analysis and univariate and multivariate Cox hazard proportion analyses revealed that high levels of S100A9 in the serum and BALF were significantly associated with poor prognoses in patients with IPF (Kaplan-Meier curve analysis: p=0.037 (serum) and 0.019 (BALF); multivariate Cox hazard proportion analysis: HR=3.88, 95% CI=1.06 to 14.21, p=0.041 (serum); HR=2.73, 95% CI=1.05 to 7.10, p=0.039 (BALF)). CONCLUSIONS: The present results indicate that increased S100A9 expression is associated with IPF progression and that the S100A9 inhibitor paquinimod is a potential treatment for IPF.


Idiopathic Pulmonary Fibrosis , Quinolines , Humans , Animals , Mice , Retrospective Studies , Idiopathic Pulmonary Fibrosis/drug therapy , Lung/pathology , Fibrosis , Bleomycin/adverse effects , Bleomycin/metabolism , Calgranulin B/adverse effects , Calgranulin B/metabolism
15.
Hum Vaccin Immunother ; 20(1): 2319965, 2024 Dec 31.
Article En | MEDLINE | ID: mdl-38408907

Mimotope, a kind of peptide vaccine, is developed to bind natural receptor and inhibit the downstream signaling. We have demonstrated that the vaccination of Tocilizumab mimotopes could alleviate the renal fibrosis by interfering with both IL-6 and ferroptosis signaling. However, the effect of the vaccination of Tocilizumab mimotopes on the fibroblast was not investigated in previous study. Thus, we sought to explore the changes in the fibroblast induced by the Tocilizumab mimotopes vaccination. Bleomycin instillation was performed to construct the pulmonary fibrosis model after the immunization of Tocilizumab mimotopes. Lung histological analysis showed that the Tocilizumab mimotopes could significantly reduce the maladaptive repairment and abnormal remodeling. Immunoblotting assay and fluorescence staining showed that Immunization with the Tocilizumab mimotopes reduces the accumulation of fibrosis-related proteins. High level of lipid peroxidation product was observed in the animal model, while the Tocilizumab mimotopes vaccination could reduce the generation of lipid peroxidation product. Mechanism analysis further showed that Nrf-2 signaling, but not GPX-4 and FSP-1 signaling, was upregulated, and reduced the lipid peroxidation. Our results revealed that in the BLM-induced pulmonary fibrosis, high level of lipid peroxidation product was significantly accumulation in the lung tissues, which might lead to the occurrence of ferroptosis. The IL-6 pathway block therapy could inhibit lipid peroxidation product generation in the lung tissues by upregulating the Nrf-2 signaling, and further alleviate the pulmonary fibrosis.


Antibodies, Monoclonal, Humanized , Pulmonary Fibrosis , Animals , Pulmonary Fibrosis/chemically induced , Pulmonary Fibrosis/prevention & control , Interleukin-6 , Bleomycin/adverse effects , Bleomycin/metabolism , Lung/pathology , Vaccination
16.
Biomarkers ; 29(2): 45-54, 2024 Mar.
Article En | MEDLINE | ID: mdl-38314578

OBJECTIVE: Idiopathic pulmonary fibrosis (IPF) is the most serious form of interstitial lung disease. We aimed to investigate the effect of Phœnix dactylifera, L. seed oil (DSO) on a murine model of IPF induced by bleomycin (BLM). METHODS: Male Wistar rats were treated with a single intra-tracheal injection of BLM (4 mg/kg) and a daily intraperitoneal injection of DSO (75, 150 and 300 mg/kg) for 4 weeks. RESULTS: Our phytochemical results showed that DSO has an important antioxidant activity with a high content of polyphenols and flavonoids. High-Performance Liquid Chromatography (HPLC) and Gas chromatography/mass spectrometry (GC-MS) analysis revealed a high amount of oleic and lauric acids and a large quantity of vitamins. Histological examination showed a significant reduction in fibrosis score and collagen bands in the group of rats treated with 75 mg/kg of DSO compared to the BLM group. DSO (75 mg/kg) reversed also the increase in catalase and malondialdehyde (MDA) levels while higher doses (150 and 300 mg/kg) are ineffective against the deleterious effects of BLM. We revealed also that DSO has no renal or hepatic cytotoxic effects. CONCLUSION: DSO can play antioxidant and antifibrotic effects on rat models of pulmonary fibrosis at the lowest dose administered.


Phoeniceae , Pulmonary Fibrosis , Rats , Male , Mice , Animals , Pulmonary Fibrosis/chemically induced , Pulmonary Fibrosis/drug therapy , Pulmonary Fibrosis/pathology , Rats, Wistar , Bleomycin/adverse effects , Lung/pathology , Oxidative Stress , Antioxidants/pharmacology , Plant Oils/pharmacology
17.
Immunopharmacol Immunotoxicol ; 46(2): 183-191, 2024 Apr.
Article En | MEDLINE | ID: mdl-38224264

BACKGROUND: Idiopathic pulmonary fibrosis (IPF) is a pulmonary fibrotic disease characterized by a poor prognosis, which its pathogenesis involves the accumulation of abnormal fibrous tissue, inflammation, and oxidative stress. Ivermectin, a positive allosteric modulator of GABAA receptor, exerts anti-inflammatory and antioxidant properties in preclinical studies. The present study investigates the potential protective effects of ivermectin treatment in rats against bleomycin-induced IPF. MATERIALS AND METHODS: The present study involved 42 male Wistar rats, which were divided into five groups: control (without induction of IPF), bleomycin (IPF-induced by bleomycin 2.5 mg/kg, by intratracheal administration), and three fibrosis groups receiving ivermectin (0.5, 1, and 3 mg/kg). lung tissues were harvested for measurement of oxidative stress [via myeloperoxidase (MPO), superoxide dismutase (SOD), glutathione (GSH)] and inflammatory markers (tumor necrosis factor-α [TNF-α], interleukin-1ß [IL-1ß], and transforming growth factor-ß [TGF-ß]). Histological assessments of tissue damage were performed using hematoxylin-eosin (H&E) and Masson's trichrome staining methods. RESULTS: The induction of fibrosis via bleomycin was found to increase levels of MPO as well as TNF-α, IL-1ß, and TGF-ß while decrease SOD activity and GSH level. Treatment with ivermectin at a dosage of 3 mg/kg was able to reverse the effects of bleomycin-induced fibrosis on these markers. In addition, results from H&E and Masson's trichrome staining showed that ivermectin treatment at this same dose reduced tissue damage and pulmonary fibrosis. CONCLUSION: The data obtained from this study indicate that ivermectin may have therapeutic benefits for IPF, likely due to its ability to reduce inflammation and mitigate oxidative stress-induced toxicity.


Pulmonary Fibrosis , Rats , Male , Animals , Pulmonary Fibrosis/chemically induced , Pulmonary Fibrosis/drug therapy , Pulmonary Fibrosis/prevention & control , Bleomycin/adverse effects , Ivermectin/adverse effects , Tumor Necrosis Factor-alpha/metabolism , Rats, Wistar , Inflammation/chemically induced , Inflammation/drug therapy , Inflammation/pathology , Lung/metabolism , Oxidative Stress , Transforming Growth Factor beta , Glutathione/metabolism , Superoxide Dismutase/metabolism
18.
Nan Fang Yi Ke Da Xue Xue Bao ; 44(1): 60-69, 2024 Jan 20.
Article Zh | MEDLINE | ID: mdl-38293977

OBJECTIVE: To assess the effect of platycodin D (PD) for alleviating pulmonary fibrosis in mice and explore the underlying mechanism. METHODS: C57BL/6J mouse models of pulmonary fibrosis induced by bleomycin injection into the airway were treated with daily intragastric administration of 10 mg/kg PD for 28 days. The changes of pulmonary fibrosis and the expression and distribution of transient receptor potential cation channel subfamily C member 6 (TRPC6) were evaluated with immunohistochemistry, HE staining and Sirius Red staining. Western blotting was used to detect α-SMA expression in the lung tissues of the mice. Primary cultures of mouse lung fibroblasts were pretreated with PD (2.5, 5.0, and 10 µmol/L) or larixyl acetate (LA; 10 µmol/L) before exposure to 10 ng/mL transforming growth factor-ß1 (TGF-ß1), and the changes in cell survival rate, expressions of collagen Ⅰ, α-SMA and TRPC6, reactive oxygen species (ROS) production, mitochondrial membrane potential, and cell proliferation capacity were assessed. Network pharmacology analysis was performed to explore the mechanism by which PD alleviated pulmonary fibrosis. RESULTS: PD treatment significantly alleviated pulmonary fibrosis and reduced α-SMA expression in BLM-induced mouse models (P<0.05). In TGF-ß1-induced primary mouse lung fibroblasts, PD effectively inhibited the cell proliferation, reduced ROS production (P<0.0001), rescued the reduction of mitochondrial membrane potential (P<0.001), and inhibited the expressions of α-SMA and collagen Ⅰ (P<0.05). Network pharmacology analysis suggested that TRPC6 mediated the effect of PD for alleviating pulmonary fibrosis. Immunohistochemistry showed that PD significantly reduced TRPC6 expression in the lung tissues of BLM-induced mice. In primary mouse lung fibroblasts, PD significantly inhibited TGF-ß1-induced TRPC6 expression (P<0.05), and LA treatment obviously lowered the expression levels of TRPC6, α-SMA and collagenⅠ (P<0.05). CONCLUSION: PD alleviated pulmonary fibrosis in mice possibly by down-regulating TRPC6 and reducing ROS production.


Pulmonary Fibrosis , Saponins , Triterpenes , Mice , Animals , Pulmonary Fibrosis/chemically induced , Reactive Oxygen Species/metabolism , Transforming Growth Factor beta1/metabolism , TRPC6 Cation Channel/metabolism , TRPC6 Cation Channel/therapeutic use , Mice, Inbred C57BL , Lung/pathology , Fibroblasts , Bleomycin/adverse effects , Collagen Type I
19.
Chem Biol Drug Des ; 103(1): e14446, 2024 01.
Article En | MEDLINE | ID: mdl-38230787

Ammonia can induce pulmonary fibrosis in humans and animals. Platycodin D (PLD) possesses various bioactive activities including anti-fibrotic properties. In this study, we aimed to explore the activity and mechanism of PLD in pulmonary fibrosis induced by ammonia. The mouse model of ammonia-induced lung fibrosis was established, and the role of PLD was assessed by H&E and Masson's trichrome staining. The differentially expressed genes (DEGs) were identified by RNA-seq and subjected to GO and KEGG pathway analyses. BEAS-2B cells were treated with NH4 Cl alone or along with PLD. Results showed that PLD attenuated ammonia-induced pulmonary inflammation and fibrosis in vivo. The extracellular matrix (ECM)-receptor interaction pathway was predicted as a prominent pathway underlying the anti-fibrotic function of PLD. In ammonia-induced mouse models and NH4 Cl-treated BEAS-2B cells, PLD could repress the activation of the TGF-ß1 pathway. By incubating lung fibroblast HFL1 cells with the conditioned medium of BEAS-2B cells treated with NH4Cl alone or along with PLD, PLD was confirmed to attenuate NH4 Cl-induced ECM deposition in HFL1 cells. Our findings demonstrate that PLD exerts a protective function in ammonia-induced pulmonary fibrosis by repressing TGF-ß1-mediated ECM remodeling, suggesting the potential therapeutic value of PLD in this disease.


Pulmonary Fibrosis , Saponins , Triterpenes , Humans , Mice , Animals , Pulmonary Fibrosis/chemically induced , Pulmonary Fibrosis/drug therapy , Pulmonary Fibrosis/metabolism , Transforming Growth Factor beta1/pharmacology , Ammonia/adverse effects , Ammonia/metabolism , Signal Transduction , Extracellular Matrix , Fibroblasts/metabolism , Disease Models, Animal , Bleomycin/adverse effects
20.
Eur J Pharmacol ; 967: 176355, 2024 Mar 15.
Article En | MEDLINE | ID: mdl-38280463

Pulmonary fibrosis is a challenging lung disease characterized by a bleak prognosis. A pivotal element in the progression of this disease is the dysregulated recruitment of macrophages. Nicotinamide phosphoribose transferase (NAMPT), secreted by alveolar epithelial cells and inflammatory cells, has been previously identified to influence macrophage inflammation in acute lung injury through the nicotinamide adenine dinucleotide (NAD) rescue synthesis pathway. Nonetheless, the exact role of NAMPT in the regulation of lung fibrosis is yet to be elucidated. In our research, we employed bleomycin (BLM) to induce pulmonary fibrosis in Namptflox/flox;Cx3cr1CreER mice, using Namptflox/flox mice as controls. Our findings revealed an augmented expression of NAMPT concurrent with a marked increase in the secretion of NAD and inflammatory cytokines such as IL-6, TNF-α, and TGF-ß1 post-BLM treatment. Furthermore, an upsurge in NAMPT-positive macrophages was observed in the lungs of BLM-treated Namptflox/flox mice. Notably, a conditional knockout of NAMPT (NAMPT cKO) in lung macrophages curtailed the BLM-induced inflammatory responses and significantly mitigated pulmonary fibrosis. This was associated with diminished phospho-Sirt1 (p-Sirt1) expression levels and a concomitant rise in mothers against decapentaplegic homolog 7 (Smad7) expression in BLM-treated mouse lungs and murine RAW 264.7 macrophage cells. Collectively, our data suggests that NAMPT exacerbates macrophage-driven inflammation and pulmonary fibrosis via the Sirt1-Smad7 pathway, positioning NAMPT as a promising therapeutic target for pulmonary fibrosis intervention.


Pulmonary Fibrosis , Animals , Mice , Bleomycin/adverse effects , Cytokines/metabolism , Inflammation , Macrophages/metabolism , NAD , Niacinamide , Nicotinamide Phosphoribosyltransferase/genetics , Pulmonary Fibrosis/chemically induced , Sirtuin 1/genetics , Sirtuin 1/metabolism , Transferases
...